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In this study, it is shown how the equivalent sand roughness required in the Moody
chart can be calculated for arbitrarily shaped wall roughnesses. After a discussion
of how to define the wall location and roughness height in the most reasonable
way, a numerical approach based on the determination of entropy production in
rough pipes and channels is presented. As test cases, three different two-dimensional
roughness types have been chosen which are representative of regular roughnesses
on machined surfaces. In the turbulent range, skin friction results with these test
roughnesses can be linked to Nikuradse’s sand roughness results by a constant factor.
For laminar flows, a significant effect of wall roughness is identified which in most
other studies is neglected completely. The dissipation model of this study is validated
with experimental data for laminar and turbulent flows.

1. Introduction
Friction factors for fully developed (horizontal) pipe and channel flows are a

non-dimensional representation of the pressure drop which for these flows is exactly
balanced by skin friction forces. Especially for turbulent flows, they are strongly
dependent on wall roughness. Since, however, the specific character of wall roughness
in terms of shape, size and distribution strongly varies from case to case, an equivalent
roughness of a unique character was introduced in order to enable engineers to design
piping systems. This so-called equivalent sand roughness concept according to Moody
(1944) is widely accepted as a standard approach to account for the roughness
influence on skin friction factors. This classical approach to find friction factors
for rough pipes or channels also involves the hydraulic diameter concept (see e.g.
Nikuradse 1930; Schiller 1923) to account for different shapes of the cross-sections.

With these two concepts and dimensional analysis considerations, the pressure drop
dp/dx (or wall shear stress τw) is a function of the mean flow velocity um, the cross-
section A with circumference C, the characteristic roughness height k, the density �

and the viscosity μ. It is cast into the non-dimensional form

f = f (ReDh, K) (1.1)

with

f = −dp

dx

2Dh

�u2
m

(
=

8τw

�u2
m

)
(friction factor), (1.2)
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Real, rough wall

L (channel  length, m)

C (circumference, m)

A (cross-section, m2)
um (mean velocity, m s–1)

m
.
  (mass flux, kg s–1)

Figure 1. Channel of arbitrary cylindrical shape with cross-section A and length L. A, C,
and um only apply for the equivalent smooth channel defined by De

h in § 4.
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Table of correspondence

Material and surface
characteristics

ks
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...
...

Figure 2. Irregular roughness (a) and its corresponding equivalent sand roughness (b).

ReDh =
�umDh

μ
(Reynolds number), (1.3)

K =
k

Dh

(roughness number) (1.4)

and the hydraulic diameter

Dh =
4A

C
. (1.5)

The hydraulic diameter concept assumes that results gained for circular cross-
sections can be used for arbitrarily shaped channels as shown in figure 1, provided
Dh according to (1.5) is used as the characteristic length of the cross-section. This
is an approximation which is poor for laminar flows (with deviations up to 30 %),
but good for turbulent flows (with deviations often below 2 %), as shown by White
(2005), for example.

The equivalent sand roughness concept assumes that each (often irregular)
roughness as exemplified in figure 2(a) is represented by a particular homogeneous
(i.e. regular) roughness which is composed of densely packed spheres of diameter ks

as shown in figure 2(b). This equivalent sand roughness characterized by ks has to
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Figure 3. Moody chart f (ReDh,Ks) for pipes; lines k+
s = const according to (2.3);

shaded area: hydraulically smooth wall (k+
s < 5).

be chosen such that f for the roughness under consideration is equal to f for the
equivalent sand roughness at high Reynolds numbers, i.e. in the fully rough flow regime.
In engineering practice, it is commonly assumed that the corresponding ks-value is
the same for all Reynolds numbers. In order to use this concept, the ks-value of the
wall roughness under consideration must be known. These corresponding values have
been determined experimentally for many materials and surface finishings in the past
and thus can be taken from general tables of correspondence (see e.g. table 8.1 in
Munson, Young & Okiishi 2005). However, values in these tables in most cases are
given as ranges, and thus provide only a low degree of accuracy.

2. The Moody chart
Figure 3 shows the famous Moody chart (see Moody 1944). Amongst others it is

based on measurements by Nikuradse (1933) who was the first to study pipe flows with
walls actually covered by real sand so that k = ks and K =Ks (see (1.4)). According
to the Moody chart, wall roughness has no effect for laminar flows (ReDh < 2300),
i.e. f = f (ReDh), but has strong effects for turbulent flows (ReDh > 2300), i.e.
f = f (ReDh, Ks). For fully rough flows, the Reynolds-number dependence vanishes,
i.e. f = f (Ks) only.

The overall behaviour is quantified by

f =
Po

ReDh

(2.1)

in the laminar range with the Poiseuille number Po = 64 for pipe and Po = 96 for
channel flows (e.g. White 2005). In the turbulent range, however, the effect of ReDh

and Ks on f shown in figure 3 is determined by an approximation introduced by
Colebrook (1939) with the roughness number corresponding to the sand roughness
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of Nikuradse’s measurements. It is

1√
f

= −2 log10

(
Ks

3.7
+

2.51

ReDh

√
f

)
. (2.2)

The validity of this formula has been doubted ever since it was introduced (e.g.
Shockling, Allen & Smits 2006; Langelandsvik, Kunkel & Smits 2008), especially
in the so-called transitional regime, i.e. in the blending region between hydraulically
smooth and rough pipes. Doubts especially arise, for example, when lines of k+

s = const
are included in figure 3. Here, k+

s is the adequate representation of wall roughness in
terms of the near-wall coordinate y+ = yuτ/ν, with ν = μ/�, i.e.

k+
s =

ksuτ

ν
(2.3)

with the shear stress velocity uτ =
√

τw/� as scaling (characteristic) velocity. As long
as k+ < 5 roughness elements are within the viscous sublayer, hence these walls are
usually called hydraulically smooth (e.g. Schlichting & Gersten 2000) since there are
no roughness effects. In the Moody chart, lines of constant ks follow from the condition

k+
s =

ReDh

√
f

2
√

2
Ks, (2.4)

so that the shaded area in figure 3 can be identified as one where the wall actually is
hydraulically smooth. The Moody chart differs from this, however. Take, for example,
the friction factor for ReDh = 105 and k+

s = 5 which is 23 % higher than that of a
smooth wall.

3. The dissipation model approach
Losses within internal flows are often named pressure losses; however, they should

more accurately be called losses of total head since they occur when the total pressure,
i.e. the mechanical energy in a flow, is reduced. In such a process, mechanical energy
is converted into internal energy (conserving the total energy in accordance with
the first law of thermodynamics). In thermodynamics, this is a dissipation process
(dissipation of mechanical energy), so that a non-zero friction factor f is due to finite
dissipation rates in the flow.

Turning this argument around, an alternative approach is straightforward: we can
determine the local dissipation rates in the flow, integrate them over the flow domain
and thus find the corresponding friction factor. If this is done within the precise
geometry, i.e. including the details of the rough wall, f = f (ReDh, K) can be found
with K as a non-dimensional representation of the actual wall roughness.

First, however, we discuss the problem of Dh- and k-values for rough walls, since
Dh and k are required for f , ReDh and K , even in the dissipation model approach.

4. A misleading question: where is the wall?
In view of the surface profile of a rough wall the question arises: where actually

is the wall? The answer to this question, however, is strikingly simple: the wall is
where it is, and it is a rough wall. This question is better phrased as: where is
the equivalent smooth wall with respect to the real rough wall? This equivalent
wall and the equivalent channel, respectively, define Dh in f and ReDh according
to (1.2) and (1.3). Therefore, this hydraulic diameter will be called De

h hereinafter
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(e for equivalent). The question with respect to De
h, however, can only be answered

in relation to an equivalence criterion, from which in turn it can be decided which
smooth wall representation is equivalent to the real rough wall.

Three choices (with the first and the third of them often used) are:
(i) De

hI : Dh as a certain geometrical mean value based on assumptions about the
physics of the flows around the roughness elements (e.g. Croce & D’Agaro 2005; Hu,
Werner & Li 2004; Kleinstreuer & Koo 2004; Kandlikar et al. 2005).

(ii) De
hII : Dh for which the law for the smooth wall f (ReDh, K = 0) also holds for

K �= 0.
(iii) De

hIII : Dh such that the volume V of the real channel is equal to the corres-
ponding volume V = A(De

hIII )L of the equivalent smooth channel where A is evaluated
with De

hIII (e.g. Nikuradse 1933).
From our point of view, De

h should be such that it can be measured without access to
the surface, i.e. without opening the channel. This would be an operational definition of
De

h. Furthermore, the mean velocity um ≡ ṁ/�A(De
h) should be um = ṁL/m = ṁL/�V

with ṁ being the mass flux, V the volume of the real channel and m the mass of the
fluid inside of it. Then, the real volume V is the only information we require, provided
ṁ is known. Both constraints are met by De

h = De
hIII only. With ṁ and V we obtain

De
h =

4V

C
(
De

h

)
L

, (4.1)

um =
ṁL

�V
. (4.2)

The real volume V can be determined by measuring how much fluid it takes to fill
the rough channel, as Nikuradse (1933) did.

In (4.1), C(De
h) is the circumference of the equivalent smooth channel. Its shape

has to be determined under the constraint that the resulting volume is that of the real
channel, i.e. V . There are two options to achieve this. Either the cross-sectional form
(circular, triangular, plane channel, . . . ) is preset or an equivalence criterion (least
standard deviation, . . . ) is defined with some smoothness condition to be met. Setting
a circular cross-section, for example, C = πDe

h and therefore De
h = 2

√
V/πL from (4.1).

With De
h and um according to (4.1) and (4.2), respectively, the friction law for rough

pipes can be cast into the well-known form f (ReDh, K) defined in (1.1)–(1.4).

5. An open question: how to define the roughness parameter?
Now that Dh has been defined in the previous section (hereinafter, we omit the

index e), the next question is what is the appropriate definition of the roughness
parameter k that goes into the roughness number K according to (1.4). There are
different concepts of how to define the overall effect of wall roughness. Three such
concepts, each with its own definition of a roughness parameter k, are:

(i) kI : A particular roughness is characterized by its own parameter kI . The influence
of this kind of wall roughness is determined for different values of kI . These results,
however, cannot be transferred to other kinds of roughness.

(ii) kII : A general definition of k is sought by which there is a unique representation
of different kinds of roughness which has to be determined once for different values
of kII .

(iii) kIII : A uniform kind of roughness is defined as a standard roughness with
a roughness parameter kIII . Its influence is determined once for different values
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of kIII . All other kinds of roughness are individually referred to this case. The
equivalent standard roughness is determined case by case and stored in a table of
correspondence.

We easily recognize kIII as the equivalent sand roughness concept which has been
widely used so far. Its shortcoming is the need for a table of correspondence which
provides a very rough estimate only.

kII would be an appealing alternative. There are doubts, however, whether such
a unique parameter kII exists, since the problem presumably is a multi-parameter
problem. Nevertheless, there have been many attempts in this direction (e.g. Kandlikar
et al. 2005).

The individual determination of kI is obviously the most straightforward approach;
but it also is the least attractive one, since it just puts on record what is measured
without any generality in applying these results.

Whatever the choice between kI , kII and kIII , we must determine the influence of
wall roughness on the loss of total pressure. This can be done experimentally (as
in the past) or by analysing the dissipation process with an analytical/numerical
approach which we want to present here.

6. Dissipation model details
Dissipation of mechanical energy from a thermodynamic point of view is directly

linked to the production of entropy in a flow field. Therefore, a thermodynamic second
law analysis can give valuable information about losses in flows (see Rosen 1998;
Hesselgreaves 2000; Wang et al. 2003). The entropy production occurs locally in the
presence of velocity gradients. Mathematically, it is represented by one term in the
balance equation for entropy. For Newtonian fluids, the specific entropy production
rate in Cartesian coordinates with T as thermodynamic temperature is (see Bejan
1996; Herwig & Kautz 2007)

Ṡ ′′′
D =

μ

T

(
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
)

, (6.1)

and can be evaluated once the flow field (u, v, w) is known in detail.
For turbulent flows with a RANS approach (Reynolds averaged Navier–Stokes), Ṡ ′′′

D

is a time-averaged term with two parts: one represents the entropy production due to
the time averaged velocity and one is a result of velocity fluctuations. This partitioning
is somewhat arbitrary, but follows the general idea of the RANS approach. These
turbulent terms are (see Kock & Herwig 2004; Herwig & Kock 2007), with Ṡ ′′′

D = Ṡ ′′′
D

+

Ṡ ′′′
D′

Ṡ ′′′
D

=
μ

T

(
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
)

, (6.2)
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Ṡ ′′′
D′ =

μ

T

(
2

[(
∂u′

∂x

)2

+

(
∂v′

∂y

)2

+

(
∂w′

∂z

)2
]

+

(
∂u′

∂y
+

∂v′

∂x

)2

+

(
∂u′

∂z
+

∂w′

∂x

)2

+

(
∂v′

∂z
+

∂w′

∂y

)2
)

. (6.3)

Since results of calculations based on the RANS approach will provide mean velocity
components u, v and w but not the fluctuating velocity components, Ṡ ′′′

D
can be

evaluated but Ṡ ′′′
D′ cannot.

The physics behind Ṡ ′′′
D′ is the so-called turbulent dissipation. This part of the total

dissipation is basically contained in the quantity ε introduced in most turbulence
models. Here, ‘basically’ means that ε exactly corresponds to Ṡ ′′′

D′ only in the asymptotic
limit ReDh → ∞, as shown in Kock & Herwig (2004) and Mathieu & Scott (2000).
For finite Reynolds numbers, it is an (asymptotic) approximation replacing (6.3) by

Ṡ ′′′
D′ =

�ε

T
, (6.4)

where ε comes from the model equation for ε in the k–ε turbulence model, for
example.

With Ṡ ′′′
D according to (6.1) for laminar flows and Ṡ ′′′

D = Ṡ ′′′
D

+ Ṡ ′′′
D′ for turbulent flows,

the local entropy production rate can be determined when u, v, w or u, v, w and ε

distributions are known in the whole flow field, respectively. This means that the
method is a post-processing step, imposing no additional cost to the calculation itself.
Integration with respect to the channel volume V gives the overall entropy production
rates

ṠD =

∫
V

Ṡ ′′′
D dV, ṠD =

∫
V

Ṡ ′′′
D

dV, ṠD′ =

∫
V

Ṡ ′′′
D′ dV. (6.5)

In channel flows, they immediately provide the specific energy dissipation rate between
two cross-sections 1 and 2 in terms of

ϕ12 ≡ T ṠD

∣∣
12

/ṁ (laminar flow), (6.6)

ϕ12 ≡ T
(
ṠD

∣∣
12

+ ṠD′
∣∣
12

)
/ṁ (turbulent flow), (6.7)

assuming constant density �. From ϕ12, we find the friction factor in a more general
form than in § 1, cf. (1.2),

f12 ≡ ϕ12

L12

2Dh

u2
m

or f ≡ dϕ

dx

2Dh

u2
m

, (6.8)

where L12 is the distance between the cross-sections 1 and 2. Here, f12 and f are a
global and a local value, respectively.

For the special case of a fully developed flow (i.e. no changes in streamwise velocity
profiles) flowing horizontally (i.e. no changes in potential energy), ϕ12 is immediately
linked to the pressure drop, i.e.

ϕ12 = −p2 − p1

�
(laminar), ϕ12 = −p2 − p1

�
(turbulent). (6.9)
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This is why f according to (6.8) is often written in terms of dp/dx or τw , since, for
fully developed horizontal flows,

f ≡ dϕ

dx

2Dh

u2
m

= −dp

dx

2Dh

�u2
m

=
8τw

�u2
m︸ ︷︷ ︸

Fully developed, horizontal

. (6.10)

The general definition (6.8) of a friction factor f12 or f representing losses of
mechanical energy (in thermodynamic, losses of exergy or available work) is still
applicable when the flow is transient, not fully developed or undergoes changes in
potential energy. For example, f according to (6.8) can be introduced for a radial
and thus decelerated channel flow, but for this case can be linked to neither dp/dx

nor τw , because they are not representative of losses of total pressure (and thus for
losses of mechanical energy).

To illustrate the dissipation model, consider the friction factor according to (6.8)
for the fully developed laminar flow in a horizontal plane channel with smooth walls.
Between the two walls of distance 2H the velocity profile is (see White 2005)

u = 3
2
um

[
1 −

( y

H

)2
]

(6.11)

when y starts from the centreline. Substituting this velocity in (6.1) and evaluating
ṠD, ϕ12 and f12, f according to (6.5), (6.6) and (6.8), respectively, results in

f12 = f =
32

ReDh

∫ 1

0

(
∂u/um

∂y/H

)2

d(y/H ) =
96

ReDh

, (6.12)

confirming that Po =96 for the plane channel, cf. (2.1). For more complicated
geometries, integration must be performed numerically. For rough walls, this includes
all fluid-filled cavities.

7. Advantages of the dissipation model
Since the overall dissipation between two cross-sections in fully developed horizontal

channel flow, ϕ12 according to (6.9), basically is p2 − p1 and p2 − p1, respectively, one
might argue that, especially in a numerical approach to the problem, it is sufficient
merely to determine the pressure in the two cross-sections 1 and 2.

As mentioned already, this is only true for the special case of a steady fully
developed horizontal flow. Only then are changes in pressure equivalent to changes in
total pressure and thus can be taken as losses. Whenever there is a flow development
in a channel or a flow through a non-cylindrical geometry, p2−p1 does not correspond
to ϕ12 and the general dissipation model approach is required in order to determine
f12 or f according to (6.8).

Also, the general advantage holds that a quantity following from integrating a field
variable is more accurate than one that follows from the difference of two quantities
(p2 − p1) or the gradient of one quantity (τw = μ(∂u/∂y)w).

However, even for the case of fully developed horizontal flows, our dissipation
model allows a look into the ‘black box of f12 = −(p2 − p1)2Dh/�L12u

2
m’. The detailed

entropy production field yields information about where and how losses occur. This
information is the background for a physical interpretation as well as for systematic
modifications of wall roughness, for example in heat transfer problems.
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Figure 4. Three types of regular roughness elements (esw: equivalent smooth wall; for the
definition of Dh = De

hIII , see § 4). Note: the position of esw indicated above is that for plane
channels.

8. Application of the dissipation model
In this study, we apply the dissipation model in a two-dimensional and an axisymme-

tric version, representing a channel and a pipe flow, respectively. Such two-dimensional
roughness contours are representative of the regular roughnesses on machined surfaces
such as honed pipes. Their increasing application in engineering causes a demand
for deeper analysis of the roughness effects (e.g. Sletfjerding, Gudmundsson & Sjøen
1998; Shockling et al. 2006).

The fluid is considered to be Newtonian. Since thermal effects due to dissipation of
mechanical energy are negligible in most technical applications, the flow is considered
to be isothermal. As far as wall roughness is concerned, roughness elements then
are grooves in the wall, perpendicular to the streamwise direction. According to the
equivalent sand roughness concept, rough walls of this special kind are related to a
certain sand roughness height ks . For our calculations, we use three types of regular
roughness elements shown in figure 4: triangular (T-type), quadratic (Q-type) and
sinusoidal (S-type) roughness with the characteristic length scale h.

We systematically vary the roughness height kI ≡ h in equal steps as

KI =
kI

Dh

= 0, 0.005, . . . , 0.05 (laminar), KI = 0, 0.005, . . . , 0.025 (turbulent).

(8.1)

Here, kI is an individual roughness parameter which, later on, must be linked to the
standard roughness parameter kIII = ks , as discussed in § 5.

Since the flows under consideration are quasi-fully developed (velocity changes only
on a length scale �x = O(h), periodically repeated downstream) we can set periodic
boundary conditions on a section of the whole flow field shown in figure 5(a) for
the S-type rough wall. The numerical grids shown in figure 5(b) consist of two-
dimensional three-knot triangular elements locally refined towards the wall. In order
to guarantee grid-independent solutions, calculations were performed with at least
two different grid refinements and accepted only when deviations in the solutions on
two different grids were less than 0.1 %.

When dissipation rates ϕ12 according to (6.6) and (6.7) are determined, the actual
length is L12 = 2h and therefore ϕ12 is the specific dissipation rate in the section of
the flow field that is covered by the numerical grid.
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2h

1 2
Periodic boundary
conditions

R, H

(a) (b)

Figure 5. Details of the numerical solution: (a) solution domain with periodic boundary
conditions; (b) numerical grid (three-knot triangular elements) for the three types of roughness
and for the smooth wall.
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Figure 6. Poiseuille number for laminar flows and T-type wall roughness.
(a) Channel flow (b) Pipe flow.

8.1. Laminar flows

For laminar flows, cf. (6.6),

ṁϕ12 = T ṠD

∣∣
12

= μ

∫ (
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂v

∂x
+

∂u

∂y

)2
)

dV (8.2)

must be determined numerically in the solution domain for the plane channel, and
the corresponding form for the axisymmetric pipe flow. The CFD code FLUENT6.3
is used to solve the steady laminar Navier–Stokes equations (incompressible and
isothermal).

Figure 6 shows results in terms of Po(ReDh, KI ) for the T-type roughness in channels
and pipes. Each symbol × corresponds to a calculated case, full lines are added to
connect cases with the same KI -value. Two features are obvious:

(i) There is an influence of wall roughness on Po or f . With KI = 0.05 it is about
23 % for the channel flow and about 15 % for the pipe flow.

(ii) Po is independent of ReDh for ReDh → 0 and for KI → 0 since in both
limits the convective terms (inertia forces) in the Navier–Stokes equations vanish. For
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Figure 7. Poiseuille number of the channel flow as a function of KI (wall roughness)
for two Reynolds numbers ReDh.

large ReDh and KI , however, convective terms are relevant (since neither v =0 nor
∂u/∂x =0 holds close to the rough wall).

The overall effect is shown in figure 7 for the channel flow at two Reynolds
numbers (ReDh =1 and 2300). The curves are interpolations with respect to the
calculated values. Obviously the Q-type roughness elements have the strongest effect
with an increase in Po of almost 34 % for KI = 0.05 followed by the S- and T-type.
The influence of ReDh on Po, however, is lowest for the Q-type roughness.

The distribution of the entropy production is shown in figure 8 for all three types of
wall roughness at two different Reynolds numbers (ReDh = 145 and 2300). A common
feature of all three geometries is that almost no entropy production occurs in the
cavities between the elements, but it is rather concentrated in a small band along
the heads of the single roughness elements. While for ReDh = 145 the areas of equal
entropy production show a pattern of symmetry, this symmetry is disturbed for higher
Reynolds numbers owing to the influence of the convective terms.

The decreasing roughness effect (in the order Q-, S-, T-type) obviously corresponds
to the decreasing percentage of a nearly horizontal wall in the small band of high
entropy production. For the Q-type it is 50 %, for the S-type ≈ 20 % and for T-type
almost zero.

8.2. Turbulent flows

For turbulent flows, cf. (6.7),

T ṠD

∣∣
12

= μ

∫ (
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂v

∂x
+

∂u

∂y

)2
)

dV, (8.3)

T ṠD′
∣∣
12

= �

∫
εdV, (8.4)

have to be calculated for two-dimensional channel flows, for example.
We use FLUENT6.3 now for the calculation of the turbulent flow field (incom-

pressible, isothermal), with the k–ε RNG turbulence model by Yakhot & Orszag
(1986) in the RANS approach. From these results, we find f according to (6.8).
Figure 9 shows our results in terms of f (ReDh, KI ) for pipes. Again each symbol ×
corresponds to a calculated case and full lines are added to connect cases with the
same KI -value.
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(a)

(b)

(c)

(i) (ii)

(i) (ii)

(i) (ii)

Figure 8. Distribution of the specific entropy production rate Ṡ ′′′
D . Close-up of the rough wall

for two Reynolds numbers (dark: weak; light: strong; equal grey scales within each Reynolds
number only), laminar flow: (a) T-type wall roughness; (b) Q-type wall roughness and (c) S-type
wall roughness. (i) ReDh = 145; (ii) ReDh = 2300.

The dotted lines are calculated according to Colebrook’s formula (2.2) with
roughness numbers Ks different from our KI numbers. The Ks numbers are chosen
such that all f -values according to (2.2) at ReDh = 108 are equal to the f -values
resulting from our simulations at ReDh = 108. Our roughness numbers are KI =h/Dh

and are related to Colebrook’s Ks numbers as shown in figure 13.
Important aspects that can be seen in figure 9 are:
(i) Curves k+ =5 (here indicated by symbol 
) are close to those for k+ = 0 (smooth

wall, here shown for ReDh < 106) indicating that for k+ < 5, the wall is hydraulically
smooth, cf. figure 3 and the discussion with respect to the shaded area in it.
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Figure 9. Friction factor for turbulent pipe flow; 
: k+ =5 according to (2.4). (a) T-type
wall roughness. (b) S-type wall roughness. (c) Q-type wall roughness.
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Irregular
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Figure 10. Decreasing height of the viscous sublayer with increasing Reynolds numbers and
the intrusion of regular and irregular roughnesses into it (dashed line: ‘edge’ of the viscous
sublayer).

(ii) As in the Moody chart, f becomes independent of ReDh for ReDh → ∞ for
the T- and S-type roughness. The physical explanation for that behaviour is a total
destruction of the viscosity-dominated wall layer by large roughness elements.

(iii) For the Q-type roughness, the ReDh-dependence does not vanish with high
ReDh-numbers, instead the lines for KI > 0 behave as the line KI =0. This behaviour
of the Q-type roughness was first systematically investigated by Perry, Schofield &
Joubert (1969) who called it ‘d’ type roughness because the respective equivalent sand
roughness is not proportional to kI , but to a boundary-layer thickness d .

(iv) In the Moody chart, the curve f (ReDh , Ks) for Ks = const decreases monotoni-
cally between the two limits of small and large Reynolds numbers. Our curves
f (ReDh, KI ), however, have a distinct minimum close to the curve for smooth walls
(KI = Ks = 0). This inflectional behaviour can be found in all studies on regular
roughnesses (e.g. Schiller 1923; Nikuradse 1933; Streeter 1936). It was also discussed
in Schlichting (1965) and in Bradshaw (2000) and can be traced back to the uniformity
of roughness elements. Nikuradse had to accept small deviations from a particular
sand grain size owing to imperfect sieving, whereas in our numerical approach, the
deviation is zero by definition, yielding a larger range of Reynolds numbers where
the deviation from a monotonic behaviour occurs.

Obviously, regarding the departure from the smooth wall, the effects of regular
surface roughnesses differ from that of irregular surface roughnesses for increasing
Reynolds numbers. One possible explanation for this is illustrated in figure 10.
Whereas a regular roughness sticks out of the viscous sublayer for high Reynolds
numbers, it may not do this for moderate Reynolds numbers (and thus shows a
smooth wall behaviour). An irregular roughness, however, may for all Reynolds
numbers behave differently from the smooth-wall case because certain elements
always stick out of the viscous sublayer. Therefore the transition between moderate
and high Reynolds numbers can be smooth for irregular roughnesses, but more or
less abrupt or even non-monotonic for regularly rough walls.

In figure 11, the distribution of entropy production between ṠD′ and ṠD is shown
for all three types of wall roughness. According to these results, turbulent dissipation
becomes dominant for ReDh → ∞, i.e. in the range of fully turbulent flows for which
f = f (K) only (except for ‘d’ type roughnesses as in our Q-type test case). This also
may explain why f becomes independent of ReDh for ReDh → ∞. The dissipation
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Figure 11. Details of the entropy production distribution for all three types
of wall roughness.
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Figure 12. Friction factor of the channel flow as a function of Ks (wall roughness) for
ReDh = 108 according to (2.2).

part ṠD vanishes; this part, however, is ReDh-dependent through the way in which
the time mean velocity profile changes with ReDh.

Figure 12 shows that the effect of wall roughness in turbulent flows is qualitatively
different from that in laminar flows (cf. figure 7). In laminar flows there is an almost
linear increase of f =Po/ReDh with KI according to our results, whereas it is highly
nonlinear for turbulent flows according to (2.2).

As another consequence of the different wall roughness impact in the laminar
and turbulent regime, the concept of an equivalent sand roughness which is well-
established for fully turbulent flows cannot be extended to laminar flows with the
same values of Ks for both flow regimes. Furthermore, even the sequence of roughness
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Figure 13. Correlation of roughness numbers Ks and KI . +, plane channel; ◦, pipe.

types with respect to an increase in impact is different: it is T/S/Q for laminar flows
(cf. figure 7), but Q/S/T for turbulent flows (cf. figure 9a–c).

The important relation of our roughness number KI =h/Dh and Ks in the Moody
chart can best be expressed in terms of Ks/KI as a function of f for Reynolds
numbers high enough that f = f (Ks) and f = f (KI ), respectively. Figure 13 shows
there is a linear dependence of KI and Ks , i.e. Ks = const × KI . As a consequence
for each kind of roughness, characterized by one geometric parameter k = kt , one
calculation based on our dissipation model will give the fixed ratio ks/kt = Ks/Kt

with ks as equivalent sand roughness height. Here, the index t stands for technical
roughness. When Ks/Kt has been determined, the Moody chart can subsequently be
used for that roughness. Thus numerical calculations can replace an experimentally
determined table of correspondence.

9. Validation of the dissipation model
In order to validate the dissipation model of this study, we compare experimental

data for pipe and channel flows to the corresponding results gained by our theoretical
approach. We do this for two types of flow. One is the laminar radially outward flow
between two disks with one smooth and one rough wall by Gloss, Dittmer & Herwig
(2008); the other flow is the fully developed turbulent pipe flow with rough walls by
Schiller (1923).

(i) In Gloss et al. (2008), two disks of the size of silicon wafers are brought close
together with a flow between them from the centre to the edge. One disk is actually
a silicon wafer with a Q-type roughness of size kI = h = 20 μm (cf. figure 4) etched
into it. If now the disk clearance Dh/2 is changed continously the relative roughness
K =h/Dh can be changed without touching the roughness itself. Figure 14 shows
the effect of surface roughness in terms of the pressure drop with one rough wall
compared to the case with both walls being smooth.

For two Reynolds numbers at the inlet (Re = 17 and 175), measurements are
compared to the results of a numerical calculation based on the dissipation model
for laminar flows. There is a good agreement and thus verification that there is also
an influence of rough walls in laminar flows.
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Figure 14. Experimental data and numerical results for an increasing roughness
number of a laminar flow between two disks, taken from Gloss et al. (2008).
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Figure 15. Experimental data and numerical results for three different pipes with rough
walls and turbulent flow taken from Schiller (1923).

(ii) In Schiller (1923), there are well-documented data of the turbulent flow through
pipes with threads taped in along the whole length of the pipe. The geometry of a
thread turn is well defined and thus can be incorporated into the dissipation model
calculations. From five cases reported, we selected three, since the other two give rise
to some doubts concerning the reliability of the data (discussed in Schiller 1923).

Figure 15 shows the friction factor f from the measurements (symbols) compared
to our numerical results based on the dissipation model for turbulent flows. Again
there is a good accordance, at least for cases 1 and 2. Case 3 was also measured in
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the laminar regime (with a good agreement of experimental and theoretical results).
There are, however, deviations for Reynolds numbers above 104, which could only be
understood with more information about the experiments (which are not available).

Altogether, important aspects of the f -distribution for laminar as well as turbulent
flows are correctly obtained by the numerical calculations. This underlines the
reliability of a theoretical approach based on entropy production considerations.

10. Conclusion
Based on a second law analysis, we could determine friction factors in the laminar

as well as in the turbulent range of Reynolds numbers for pipe and channel flows.
Thus we were able to provide a theoretical background to the famous Moody chart
which so far has been based on experimental results only (at least for its turbulent
part).

From our study, the following points are important.
(a) The general definition of a friction factor should be based on dϕ/dx. Only for

steady, fully developed and horizontal flows, can dp/dx or τw be used instead.
(b) Dimensionless groups such as ReDh and f are defined with a characteristic

length and a characteristic velocity. Both these quantities are the characteristic
quantities of an equivalent smooth channel. The most reasonable equivalence criterion
is a common volume of the real and the equivalent channel.

(c) Defining a certain roughness parameter goes hand in hand with a certain
concept to account for the influence of surface roughness. The equivalent sand
roughness concept is promising; however, it needs a table of correspondence between
real and equivalent sand roughness. With our approach, such a table can be determined
with high accuracy by calculating the effect of a certain roughness and exactly relating
it to the equivalent sand roughness.

(d) Laminar flows are modestly affected by wall roughness with a nearly linear
increase with respect to a properly defined roughness parameter.

(e) If the equivalent sand roughness concept should be extended to cover laminar
flows, the table of correspondence cannot be the same for turbulent and for laminar
flows.
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